Using the i^* framework:

Which tool?

- i^* is useful in:
 - Requirements engineering
 - Organizational analysis
 - Business process reengineering

- **Strong points:**
 - Visual utility
 - Representation of intentional concepts
 - Easy to understand and use

- **For using i^* we need to:**
 - Adopt the most suitable variant of i^*
 - Establish guidelines for defining the models
 - Use tool support

Which i^*?

J-PRiM: Tool support for the PRiM methodology

Requirements:
- Programming language: JAVA
- Development environment: Eclipse
- Database: MySQL

PRiM: Process Reengineering i^* Methodology

Phase 1: Analysis of the Current Process

- Step 1.1. Analysis of the Current Process
- Step 1.2. Documenting the Current Process

Many projects consist of reengineering current activities.

Phase 2: Construction of the i^* Model

- Step 2.1. Actor Identification and Modelling
- Step 2.2. Building the Operational i^* Model
- Step 2.3. Building the Intentional i^* Model
- Step 2.4. Checking the Resulting i^* Model

i^* models describe the current process and the intentionality behind the process.

Alternatives may include new actors and activities.

Phase 3: Generation of Alternatives

- Step 3.1. Reengineering the Current System
- Step 3.2. Adding/Removing System Actors
- Step 3.3. Reallocating Responsibilities
- Step 3.4. Checking the Resulting i^* Model

Automatic generation of alternative i^* models

- Automatic generation is achieved by distributing activity responsibility among the chosen actors.
- i^* Models and their alternatives can also be built from scratch

Future work:

- Transform i^* models into its UML specification
- Add a graphical representation of the models
- Support for other i^* frameworks and methods

Phase 4: Evaluation of Alternatives

- Step 4.1. Choosing Suitable Properties
- Step 4.2. Defining Property Metrics
- Step 4.3. Evaluating Alternative Models
- Step 4.4. Evaluation Trade-off Analysis

The reengineering process is iterative.

Phase 5: Specification of the New System

References: